Firmware versions 0.79 and earlier operate with the QuickConnect Application

TABLE OF CONTENTS

GENERAL OVERVIEW 2
SAFETY 3
QUICK CONNECT GUIDE 4
PIN DESCRIPTIONS 6
EXTERNAL MODULATION 6
ELECTRICAL SPECIFICATIONS 7
THEORY OF OPERATION 9
OPERATING INSTRUCTIONS (STAND-ALONE) 9
OPERATING INSTRUCTIONS (REMOTE) 17
TROUBLESHOOTING 22
ADDITIONAL TECHNICAL NOTES 25
MECHANICAL SPECIFICATIONS 27
CE DECLARATION OF CONFORMITY 28
WARRANTY & CERTIFICATION 29

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCL500 LAB</td>
<td>500 mA Low Noise QCL Instrument</td>
</tr>
<tr>
<td>QCL1000 LAB</td>
<td>1.0 A Low Noise QCL Instrument</td>
</tr>
<tr>
<td>QCL1500 LAB</td>
<td>1.5 A Low Noise QCL Instrument</td>
</tr>
<tr>
<td>QCL2000 LAB</td>
<td>2.0 A Low Noise QCL Instrument</td>
</tr>
<tr>
<td>NOISESCAN</td>
<td>Noise Characterization Scan</td>
</tr>
<tr>
<td>55-110014</td>
<td>SMA-BNC Cable</td>
</tr>
<tr>
<td>55-110015</td>
<td>USB Cable</td>
</tr>
<tr>
<td>WCB310</td>
<td>Shielded SMA-SMA Cable</td>
</tr>
<tr>
<td>QCL TL LOW</td>
<td>Resistive Test Load for QCL500 or</td>
</tr>
<tr>
<td></td>
<td>QCL1000</td>
</tr>
<tr>
<td>QCL TL 1500</td>
<td>Resistive Test Load for QCL1500</td>
</tr>
<tr>
<td>QCL TL 2000</td>
<td>Resistive Test Load for QCL2000</td>
</tr>
<tr>
<td>RCKMT-LAB SNGL</td>
<td>19” Single Unit Rack Mount Kit</td>
</tr>
<tr>
<td>RCKMT-LAB DUAL</td>
<td>19” Double Unit Rack Mount Kit</td>
</tr>
<tr>
<td>INTLK REPL KIT (included with purchase)</td>
<td>Interlock Replacement Kit with BNC terminator and modified D-SUB connector to override interlocks</td>
</tr>
</tbody>
</table>

Applies to Product Revision A, firmware 0.79 and earlier
© December 2016

1Covered by U.S. Patents 6,696,887; 6,867,644 and 7,176,755. Licensed from Battelle Memorial Institute
GENERAL OVERVIEW

• Output currents of 500 mA, 1 A, 1.5 A, 2 A
• Low noise: <0.4 μA RMS up to 100 kHz (QCL500, typical)
• Compliance voltage is adjustable, 10 to 20 V (NOTE: The unit will only deliver the voltage that the load requires, up to the compliance voltage limit.)
• Analog modulation up to 2-3 MHz
• Constant Current Mode operation
• Touchscreen with intuitive user interface
• CE compliant, compatible with CDRH laser regulations
• Feature-rich for research projects
 » USB and Ethernet interfaces with software included
 » Auto voltage/current scan function
 » Data collection using a computer or USB flash drive
 » Field upgradeable firmware
 » Sophisticated error handling
 » Save and recall functions for specific set ups
• Rack mountable: 2 U height and ½ rack width
• Safety features protect your QCL investment
 » Adjustable soft-clamp current limit, with Brick-Wall Never-Exceed circuitry
 » Password protection available to lock out a selectable control set
 » Key switch, active, and passive interlocks
 » Brown-out & overvoltage protection
 » Power supply overcurrent protection
 » Driver over-temperature protection circuit
 » Relay shorts output when current is disabled
 » AC input and patented power supply filtering
 » 2 second turn-on delay — adjustable
 » 1.5 msec current ramp

THE LOWEST-NOISE DRIVER AVAILABLE

These low noise QCL instruments have the lowest current noise density of any commercially available. Powering your QCL with this patented\(^1\) driver gives you narrow linewidth, stable center wavelength, and repeatable scans.

INTUITIVE USER INTERFACE AND SUPERIOR SOFTWARE CONTROL

With Wavelength’s plug and play instrument, you have the ability to quickly set the controls using either the instrument or a remote computer.

PROTECT YOUR QCL INVESTMENT

All the essential control and monitor functions you expect in a Wavelength laser driver are incorporated into this instrument, along with protection circuitry to safeguard your QCL from minor power source faults, over-temperature conditions, and electrical faults.

The soft-clamping current limit can be set without enabling the driver output, and uses a brick-wall never-exceed limit circuit to protect the QCL from potentially damaging overcurrent situations.

OEM VERSION AVAILABLE

Once you have finalized your work, the QCL circuitry is available in compact OEM versions.

APPLICATIONS

Due to their unique construction, QCLs operate with high power in the near-IR through terahertz ranges. These wavelengths are particularly suited to detection of molecules significant to humans.

Applications for the lower noise QCL driver include: remote detection of explosive materials, medical diagnosis using the breath, non-invasive glucose testing, emissions monitoring of the atmosphere or marine environments, and pharmaceutical process quality control. Additional applications include anesthesia and hospital air quality monitoring, leak detection, and remote imaging.

\(^1\)Covered by U.S. Patents 6,696,887; 6,867,644 and 7,176,755. Licensed from Battelle Memorial Institute
SAFETY

DEFINITIONS

<table>
<thead>
<tr>
<th>CHASSIS GROUND Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION: A condition that has the potential to cause damage to property or instrument.</td>
</tr>
<tr>
<td>WARNING: A condition that has the potential to cause bodily harm or death.</td>
</tr>
</tbody>
</table>

FUSES

• Disconnect the power to the QCL instrument before changing the fuses.
• To prevent damage to the QCL instrument when replacing fuses, locate and correct the problem that caused the fuse to blow before re-applying power.
• To avoid fire hazard, use only the specified fuse with the correct type number, voltage, and current ratings, and use only the recommended replacement parts.

CAUTIONS

The QCL instrument has no user-serviceable parts. Other than the fuses, the QCL instrument is not designed to be maintained by the user nor does it contain any parts that can be repaired by the user. All maintenance and repairs must be performed by Wavelength or the warranty will be void.

Use a soft cloth to remove dust from the QCL instrument. Do not expose the QCL instrument to any liquids, sprays, or solvents. To avoid electrical shock, unplug the power cord before cleaning the instrument.

Before connecting to the power source, make sure the correct cables and voltage for your area are set. The voltage selection is available on the back of the instrument. See the Quick Start Guide for instructions on changing the voltage.

CAUTIONS

• Observe all Cautions and Warnings both in the User Guide and on the instrument.
• Use the QCL instrument as specified in this guide or the protection provided by this instrument may be impaired and the warranty will be voided.
• Use good laser safety practices when using the QCL instrument.
• Before proceeding, it is critical that you take precautions to prevent electrostatic discharge (ESD) damage to your laser.
• Locking the instrument with the key switch disables the output current. The key can only be removed when in the LOCK position.

POWER CORDS

• This equipment is grounded through the AC power cord grounding conductor.
• Use only the earth-grounded power cords that are recommended in this user guide.
• Route power cords and other cables so that they cannot be damaged.
• Position the QCL instrument in a location that makes it easy to quickly disconnect the power cord.
• To avoid fire hazard, use only the specified power cords with the correct grounding, voltage, and current ratings.

WARNINGS

Position the QCL instrument so that access to the Main Power On/Off switch on the back panel is easily accessed.

Do not use the QCL instrument if there is evidence of damage from shipping; damaged equipment can present significant safety hazards. If you suspect the QCL instrument is damaged, contact Wavelength technical support before attempting to operate the instrument.

To avoid electrical shock, use the recommended earth-grounded power cables and properly earth-grounded, 3-prong receptacles only. Failure to follow this precaution can result in severe injury.

To avoid injury, do not tell the engineers how to do their jobs. Let them muddle through until they decide to read the User Guide.
QUICK CONNECT GUIDE

INSTALL FUSE & SELECT VOLTAGE

Figure 1. Fuse Box and Voltage Selector

1. On the back panel, locate the Fuse Box and Voltage Selector receptacle. (See the Rear Panel diagram on page 10 for the location.)

2. Insert a small flathead screwdriver into the slot (1) at the top of the receptacle and twist to open faceplate. The red fuse drawer and fuses are located in the Ship Kit.

3. On the face of the fuse drawer are two voltage choices. Based on your country, select the proper fuses to install.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FUSE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-120 V</td>
<td>1.25 A, 250 V,</td>
<td>Littelfuse 5 x 20 mm,</td>
</tr>
<tr>
<td></td>
<td>fast blow</td>
<td>Part #02351.25HXP</td>
</tr>
<tr>
<td>220-240 V</td>
<td>0.63 A, 250 V,</td>
<td>Littelfuse 5 x 20 mm,</td>
</tr>
<tr>
<td></td>
<td>fast blow</td>
<td>Part #0217.630MXP</td>
</tr>
</tbody>
</table>

CAUTION: It is imperative that the correct voltage is used. Serious damage can occur if the incorrect voltage is selected.

4. Insert the fuses as shown in Figure 2, with a short fuse at the contact end of the receptacle. Then, turn the drawer until the correct voltage label is at the top and replace it in the receptacle. Press firmly to make sure the drawer is completely seated. It should be flush with the receptacle.

Figure 2. Fuse Installation and Voltage Selector

5. Close the faceplate, again pressing firmly until it is flush. The correct voltage label is shown through the Voltage Window (2) on the faceplate.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 3.

Figure 3. QCL Wiring Diagram

NOTE: The SMA case is electrically connected to the QCL chassis.

Figure 4. QCL Polarity Diagram
SETUP INTERLOCKS

The Wavelength Interlock Replacement Kit includes a male D-SUB with the passive interlock pins shorted and a BNC terminator.

1. For the passive interlock, on the back panel, short PIN 1 and PIN 2 on the QCL D-SUB.
2. For the active interlock, on the back panel, insert a BNC terminator in the ACTIVE LOCK BNC port.
3. On the front panel, the key switch must be on UNLOCK to enable the current to the QCL.

TURN ON POWER

1. On the back panel, press the power switch to the |. The front panel power button light pulses slowly.
2. On the front panel, press the Power button. The button illuminates, the touchscreen activates, and the Control screen is active.
3. The front panel displays dashes instead of digits until the unit has finished its power-up sequence (~10 seconds).

SET LIMITS

1. Press to access the Limit Screen.
2. On the Limit screen, press the blue Limit Current value and rotate the Adjustment knob to change to the desired value. The instrument will beep when set.

NOTE: The Max Supply Voltage and Cable Resistance values can be ignored for now.

ADJUST SETPOINT

1. Press to access the Control Screen.
2. Press the Setpoint current value and turn the Adjustment knob to change it. The instrument will beep when set.

ENABLE CURRENT

Press the ENABLE button. There is a standard 2-second delay before the button illuminates and the current flows.

SHUTDOWN THE INSTRUMENT

If the Enable button is illuminated, current is still flowing to the test load. Before shutting down, the current needs to be turned off.

1. Press the Enable button. The button light will turn off and current to the QCL test load will stop.
2. On the front panel, press the Power button. The touchscreen will go black but the button light slowly pulses blue to indicate that the back Power button is still on. NOTE: Turning off only the front Power button puts the instrument in Standby mode.
3. On the back panel, press the power switch to O.
PIN DESCRIPTIONS

QCL D-SUB

Figure 4. Female 9-Pin D-SUB

Table 1. QCL D-SUB Pin-Out

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Passive interlock pins (must be shorted to enable current)</td>
</tr>
<tr>
<td>3</td>
<td>Chassis ground</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5 *</td>
<td>QCL- (negative)</td>
</tr>
<tr>
<td>6</td>
<td>Not used</td>
</tr>
<tr>
<td>7</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>Not used</td>
</tr>
<tr>
<td>9 *</td>
<td>QCL+ (positive)</td>
</tr>
<tr>
<td>SHELL</td>
<td>Chassis ground</td>
</tr>
</tbody>
</table>

* NOTE: Use Pins 5 and 9 for current to the QCL.

MONITOR D-SUB

Figure 5. Male 9-Pin D-SUB

Table 2. Monitor D-SUB Pin-Out

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alignment LED (+5 V) can source 250 mA</td>
</tr>
<tr>
<td>2</td>
<td>Alignment LED ground</td>
</tr>
<tr>
<td>3</td>
<td>QCL current enabled indicator (+5 V TTL) high = disabled, low, ground = enabled</td>
</tr>
<tr>
<td>4</td>
<td>QCL current enabled indicator ground</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>Analog setpoint monitor</td>
</tr>
<tr>
<td>7</td>
<td>Analog monitor ground</td>
</tr>
<tr>
<td>8</td>
<td>Analog output current monitor</td>
</tr>
<tr>
<td>9</td>
<td>Analog monitor ground</td>
</tr>
</tbody>
</table>

BNC PINS

Figure 8. BNC Pins

TRANSFER FUNCTIONS BY MODEL

External modulation input, setpoint monitor, and analog current monitor transfer functions:

- QCL500-LAB: 0.1 A / V.
- QCL1000-LAB: 0.2 A / V.
- QCL1500-LAB: 0.3 A / V.
- QCL2000-LAB: 0.4 A / V.

The input range is always 0 – 5 V.

ACTIVE INTERLOCK BNC

Ground the center pin to the outer shell to override the interlock and allow the current to flow to the QCL. If an external circuit won’t be used, a 50 Ω or 75 Ω terminator is acceptable.

TRIGGER BNC

See Additional Capabilities on page 16.
ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>DRIVER OUTPUT CURRENT</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current</td>
<td>0.5, 1.0, 1.5, or 2.0</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Noise Current</td>
<td>0.4</td>
<td>1.0</td>
<td>1.3</td>
<td>μA RMS</td>
<td>QCL1000 at 500 mA output, 100 kHz test bandwidth</td>
</tr>
<tr>
<td>Noise Current Density</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>nA / √Hz</td>
<td>QCL1000 at 500 mA, 10 Ω test load</td>
</tr>
<tr>
<td>Stability, short and long term</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>ppm</td>
<td>25°C ambient</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>5</td>
<td>10</td>
<td>18</td>
<td>ppm / °C</td>
<td></td>
</tr>
</tbody>
</table>

Compliance Voltage Range

- MIN: 10
- TYP: 20
- MAX: 50
- UNITS: V

Slow Start Current Ramp (after Enabled)

- MIN: 1.5
- TYP: msec
- MAX: sec

Delayed Start

- MIN: 2
- TYP: sec

INTERNAL MODULATION

<table>
<thead>
<tr>
<th>EXTERNAL MODULATION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation Bandwidth</td>
<td>2</td>
<td>3</td>
<td>MHz</td>
<td>Sinewave</td>
<td></td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>250 / 200</td>
<td>nsec</td>
<td>To full scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>30</td>
<td>V / μsec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of Modulation</td>
<td>90</td>
<td>%</td>
<td>At 500 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1</td>
<td>k Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Modulation Input Damage Threshold</td>
<td>-10 to +10</td>
<td>V</td>
<td>BNC Connector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MONITORS AND OUTPUTS

<table>
<thead>
<tr>
<th>MONITORS AND OUTPUTS</th>
<th>VALUE</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint Resolution</td>
<td>16</td>
<td>bits</td>
<td>5V = fullscale output</td>
</tr>
<tr>
<td>Display Accuracy Measurement Resolution</td>
<td>24</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Accuracy, Current Output Monitor vs. Actual Current (display or analog output)</td>
<td>0.2</td>
<td>%</td>
<td>> 5% of full scale</td>
</tr>
<tr>
<td>Accuracy, Current Setpoint vs. Actual Current</td>
<td>0.5</td>
<td>%</td>
<td>< 5% of full scale</td>
</tr>
<tr>
<td>Accuracy, Analog Setpoint Monitor</td>
<td>0.2</td>
<td>%</td>
<td>Internal setpoint</td>
</tr>
<tr>
<td>External modulation</td>
<td>0.2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Accuracy, Analog Setpoint Monitor</td>
<td>5</td>
<td>%</td>
<td>>10% of full scale</td>
</tr>
<tr>
<td>External modulation</td>
<td>25</td>
<td>%</td>
<td><10% of full scale</td>
</tr>
</tbody>
</table>

1 Current Setpoint Monitor is a reference signal only, and may deviate from the actual setpoint by up to 5% when the setpoint is greater than 10% of full scale.

CONTINUED ON FOLLOWING PAGE
POWER SUPPLY REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Power Supply and Line Frequency</td>
<td>100-120 / 220-240 VAC, 2 A, 50-60 Hz</td>
<td>Switch selectable: 100-120 V and 220-240 V, appropriate power cord supplied</td>
</tr>
<tr>
<td>Fuse for 220-240 V</td>
<td>0.63 A, 250 V, fast blow</td>
<td>5 x 20 mm, Part #0217.630MXP, Littelfuse</td>
</tr>
<tr>
<td>Fuse for 100-120 V</td>
<td>1.25 A, 250 V, fast blow</td>
<td>5 x 20 mm, Part #02351.25HXP, Littelfuse</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>9.8 Watts</td>
<td>at idle, no output to QCL load</td>
</tr>
</tbody>
</table>

GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up Time</td>
<td>1 Hour</td>
<td></td>
</tr>
<tr>
<td>Remote Interface</td>
<td>USB, Ethernet</td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td>One (1) Year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-3 IEC 61000-4-4 IEC 61000-4-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-6 IEC 61000-4-8 IEC 61010-1</td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Operating Temperature Range</td>
<td>-40 to 50</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>80</td>
<td>%</td>
<td>Relative humidity at 30°C (non-condensing)</td>
</tr>
<tr>
<td>Weight</td>
<td>12 (~5.4)</td>
<td>lbs (kg)</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>3.47 x 8.86 x 17.72 (89 x 226 x 450)</td>
<td>inches (mm)</td>
<td></td>
</tr>
</tbody>
</table>
WHAT’S IN THE BOX

- QCL Instrument
- Power Cable, type appropriate for final location
- Red fuse tray
- Two 0.63 A fuses and two 1.25 A fuses for fuse box on the back panel
- USB Flash Drive, includes all necessary software, instrument documentation, and additional storage space
- Keys for the key switch
- Interlock Replacement Kit (interlocks for QCL D-SUB and Active Interlock BNC)

THEORY OF OPERATION

The QCL Series low noise drivers are designed expressly to drive quantum cascade lasers, and utilize patented circuitry to deliver ultra-low noise current and still maintain a wide modulation bandwidth.

The QCL drivers are controlled current sources; they deliver the current commanded by the setpoint. The current source continually monitors the actual output current, compares it to the setpoint, and adjusts the current if there is a difference between the two signals.

As current is driven through the load, there is a voltage drop across the load proportional to the load resistance and current. As the current increases, the voltage drop may increase to the point that it reaches the Compliance Voltage limit of the current source. Once that occurs the current source is no longer able to increase the current driven to the load even if you increase the setpoint.

The QCL driver includes features that help protect your laser, and also make the driver more versatile in a wide array of applications. These features are explained in detail in the Operating Instructions.

- The user-adjustable current limit prevents overdriving the laser even if the external modulation signal is above the maximum drive current for the laser.
- Over- and under-voltage protection circuits protect the driver and QCL if the power supply voltages fall outside of the acceptable operating range.
- Over-temperature protection circuits safely shut down the output if the internal temperature of the QCL driver rises to an unsafe level. The fan turns on to manage the internal temperature.
- Output slow-start ramps the current to setpoint over 1.5 msec.
- A mechanical relay shorts the output connections when the output is disabled, and when the QCL driver is powered off.

These instructions are for operating the QCL Laboratory Series instrument. Fuses are provided but not installed. After installing the fuses in the fuse box, be sure to install the fuse box so the correct voltage for your country is showing. We also recommend using a test load until you are familiar with operation of the instrument.

REQUIRED AND OPTIONAL EQUIPMENT FOR SET UP

- Small, narrow headed flathead screwdriver (required)
- Test load (optional)
- Wavelength Interlock Replacement Kit with interlock overrides (optional)

COMPUTER REQUIREMENTS FOR REMOTE OPERATION ONLY (OPTIONAL)

Hardware

- 1 GHz or faster 32-bit (x86) OR 64-bit (x64) processor
- 1 GB RAM 32-bit or 2 GB RAM 64-bit
- 16 GB available hard disk space for 32-bit or 20 GB for 64-bit DirectX 9 graphics device with WDDM 1.0 or higher driver

Software

- Windows 8, 7 SP1, or Vista SP2 Operating System 4.5 .NET framework

ESD INFORMATION

Before proceeding, it is critical that you take precautions to prevent electrostatic discharge (ESD) damage to the load. ESD damage can result from improper handling of sensitive electronics, and is easily preventable with simple precautions.
Table 3. Rear Panel Functions

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fan Vent</td>
<td>Do not block air flow.</td>
</tr>
<tr>
<td>2 Chassis Ground</td>
<td>Physical connection to chassis and electrical earth ground.</td>
</tr>
<tr>
<td>3 QCL SMA</td>
<td>SMA connector, alternate connection to QCL.</td>
</tr>
<tr>
<td>4 QCL D-SUB</td>
<td>9-Pin female D-SUB connector.</td>
</tr>
<tr>
<td>5 Monitors</td>
<td>9-Pin male D-SUB connector.</td>
</tr>
<tr>
<td>6 USB</td>
<td>USB port, connection between instrument and a computer.</td>
</tr>
<tr>
<td>7 Ethernet</td>
<td>Ethernet port, connection between instrument and a computer or network.</td>
</tr>
<tr>
<td>8 EXT MOD</td>
<td>External Modulation: BNC connector, setpoint signal generator input.</td>
</tr>
<tr>
<td>9 Active Lock</td>
<td>BNC connector, active interlock, tie center pin to GND to enable output.</td>
</tr>
<tr>
<td>10 Trigger</td>
<td>BNC connector output, allows instrument to trigger external device for synchronizing measurement.</td>
</tr>
<tr>
<td>11 Fuse Box and Voltage Selector</td>
<td>Removable fuse drawer allows user to switch between 115 V and 230 V. Fuses need to be installed prior to operation.</td>
</tr>
<tr>
<td>12 Power Switch</td>
<td>AC power switch that powers the instrument.</td>
</tr>
<tr>
<td>13 Power Plug</td>
<td>IEC AC line input.</td>
</tr>
</tbody>
</table>

Figure 9. Rear Panel
INSTALL FUSES AND SELECT PROPER VOLTAGE

1. On the back panel, locate the Fuse Box and Voltage Selector receptacle. (See the Rear Panel diagram on page 10 for the location.)

2. Insert a small flathead screwdriver into the slot (1) at the top of the receptacle and twist to open faceplate. The red fuse drawer and fuses are located in the Ship Kit.

3. On the face of the fuse drawer are two voltage choices. Based on your country, select the proper fuses to install.

4. Insert the fuses as shown in Figure 11, with a short fuse at the contact end of the receptacle. Then, turn the drawer until the correct voltage label is at the top and replace it in the receptacle. Press firmly to make sure the drawer is completely seated. It should be flush with the receptacle.

5. Close the faceplate, again pressing firmly until it is flush. The correct voltage label is shown through the Voltage Window (2) on the faceplate.

CONNECT POWER

Insert the female end of the IEC AC power cord into the Power receptacle on the back panel and then plug the male end into the power source.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 12.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FUSE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-120 V</td>
<td>1.25 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #02351.25HXP</td>
</tr>
<tr>
<td>220-240 V</td>
<td>0.63 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #0217.630MXP</td>
</tr>
</tbody>
</table>

CAUTION: It is imperative that the correct voltage is used. Serious damage can occur if the incorrect voltage is selected.

CONNECT POWER

Insert the female end of the IEC AC power cord into the Power receptacle on the back panel and then plug the male end into the power source.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 12.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FUSE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-120 V</td>
<td>1.25 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #02351.25HXP</td>
</tr>
<tr>
<td>220-240 V</td>
<td>0.63 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #0217.630MXP</td>
</tr>
</tbody>
</table>

CAUTION: It is imperative that the correct voltage is used. Serious damage can occur if the incorrect voltage is selected.

CONNECT POWER

Insert the female end of the IEC AC power cord into the Power receptacle on the back panel and then plug the male end into the power source.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 12.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FUSE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-120 V</td>
<td>1.25 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #02351.25HXP</td>
</tr>
<tr>
<td>220-240 V</td>
<td>0.63 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #0217.630MXP</td>
</tr>
</tbody>
</table>

CAUTION: It is imperative that the correct voltage is used. Serious damage can occur if the incorrect voltage is selected.

CONNECT POWER

Insert the female end of the IEC AC power cord into the Power receptacle on the back panel and then plug the male end into the power source.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 12.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FUSE</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-120 V</td>
<td>1.25 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #02351.25HXP</td>
</tr>
<tr>
<td>220-240 V</td>
<td>0.63 A, 250 V, fast blow</td>
<td>Littelfuse 5 x 20 mm, Part #0217.630MXP</td>
</tr>
</tbody>
</table>

CAUTION: It is imperative that the correct voltage is used. Serious damage can occur if the incorrect voltage is selected.

CONNECT POWER

Insert the female end of the IEC AC power cord into the Power receptacle on the back panel and then plug the male end into the power source.

WIRE A TEST LOAD

Use of a test load is recommended for setup of the QCL instrument. Use the Wavelength test loads listed on page 1, or when building your own test load, a 10 Ω resistor with a 50 W power rating is recommended for the QCL500, QCL1000, and QCL1500. For the QCL2000, a 50 W 5 Ω resistor is recommended.

- Install the test load by either connecting to the QCL SMA port or wiring the load to PIN 5 and PIN 9 on the QCL D-SUB as shown in Figure 12.
SET UP INTERLOCKS

The Wavelength Interlock Replacement Kit includes a male D-SUB with the passive interlock pins shorted and a BNC terminator.

1. For the passive interlock, on the back panel, short PIN 1 and PIN 2 on the QCL D-SUB.
2. For the active interlock, on the back panel, insert a BNC terminator in the ACTIVE LOCK BNC port.
3. On the front panel, the key switch must be on UNLOCK to enable the current to the QCL.

NOTE: To disable operation, turn the key switch to the LOCKED position. The key can only be removed when in the locked position.

FRONT PANEL

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Button Powers the application electronics. Glows blue when application electronics power is on and unit is operational, slow pulses blue when on Standby and only the back panel power switch is on.</td>
</tr>
<tr>
<td>2</td>
<td>Adjustment Knob Turn to adjust the numeric values. Instrument beeps when values are set.</td>
</tr>
<tr>
<td>3</td>
<td>Enable Button Allows instrument to deliver current to the QCL. Glows blue when current is enabled.</td>
</tr>
<tr>
<td>4</td>
<td>Keylock Switch UNLOCK allows laser output current to flow, LOCK disables laser output current. NOTE: The key can be removed only in LOCK position.</td>
</tr>
<tr>
<td>5</td>
<td>Data Port USB flash drive, used to update the firmware or save data. This is not used for remote USB control of the instrument.</td>
</tr>
</tbody>
</table>

Figure 14. Front Panel

Table 4. Table 5. Front Panel Functions

TEXT AND ICON COLOR KEY

TEXT

Text indicates current state.

White, Green Uneditable field, for information only.

Blue Editable field, touch to select or toggle field (text highlights and changes color), adjust using either the touchscreen or adjustment knob. Instrument beeps and text returns to blue when values are set. Touch again to cancel selection.

ICONS

Icon color indicates current state.

Blue Screen is active.

Grey Screen is inactive, touch icon to access that screen.
TURN ON QCL INSTRUMENT

1. Press the Power switch on the back panel to |. The front panel power button light slowly pulses.
2. Press the Power button on the front panel, the button illuminates, touchscreen is activated, and the Control screen is active.

NOTE: Turning off front Power button powers down the application electronics and puts the unit into standby mode. Turning off rear Power switch powers down all electronics and settings return to factory default.
3. The front panel displays dashes instead of digits until the unit has finished its power-up sequence (~10 seconds).

SET LIMITS

1. Press to access the Limit Screen.
2. Press Limit Current, Maximum Supply Voltage, and/or Cable Resistance values and rotate the Adjustment knob to change each value. The instrument will beep when set.

Figure 15. Limit Screen

NOTES:
• The Limit Current should not exceed the damage current threshold of your QCL.
• The Maximum Internal Supply Voltage can be lowered to minimize internal instrument temperature or to act as a compliance voltage clamp on the QCL output current. See Additional Technical Notes on page 25 for optimization instructions.
• The Cable Resistance range is 0 – 4 Ω.

QCL Voltage displays the voltage at the QCL DSUB or SMA terminals. To account for voltage loss across the cable to the QCL, you can enter a non-zero value for Cable Resistance.

The QCL Voltage will now display as:

Voltage Displayed = Voltage@Pins - (Cable Resistance x Operating Current)

• The minimum limit current is about 8% of full scale.

ADJUST THE SETPOINT

1. Press to access the Control Screen.
2. Press the Setpoint value and turn the Adjustment knob until the desired operating current is displayed.

Figure 16. Control Screen

NOTE: The Control screen is on by default when the instrument is turned on. The Mode is Constant Current by default and cannot be changed.

DISPLAY EXISTING CURRENT AND VOLTAGE VALUES

Press to access the Monitor Screen.

Values on this screen cannot be changed and are for information only.

Figure 17. Monitor Screen
ENABLE THE QCL INSTRUMENT

Press the Enable button on the front panel. The button will glow blue only when current is delivered to the load. There is a standard 2-second delay before the button illuminates and current flows.

VI SCAN

1. On the Control screen, press to access the VI scan screen.

2. Press the Current Start value to select the current at which to start the scan. Turn the Adjustment knob to change it.

3. Press the Current Stop value to select the current at which to stop the scan.

4. Press the Step Size value to select the current interval at which to take a measurement. The maximum interval is 10% of full scale. Minimum step is 1% of full scale.

5. Press the Time Interval value to select the amount of time to allow the current to settle. For the best data accuracy, use a Time Interval of 2 seconds or more. The minimum time interval is 0.1 seconds.

6. Insert the USB flash drive in the USB slot on the front panel.

7. Press the green Run button to start the scan. When finished, data is saved to the USB flash drive with the filename viscanxx.txt, where xx starts at 00 and increments.

8. To stop mid-scan, press the red Stop button to abort the scan. Any data collected during the aborted scan is saved to the USB flash drive.

NOTES:

- The step interval time is approximate. In the scan files, time intervals are slightly more than the step interval indicated on the instrument. Each interval builds on the previous one.
- Should the Step Size interval not finish at the Stop Current, the reading is still taken and recorded. For example, if the Start Current is 250 mA and the Stop Current is 1.04 A with a Current Step of 250 mA, a reading is taken at 1000 mA (1 A) and 1040 mA (1.04 A) but not at 1250 mA (1.25 A).
- After a VI scan is completed, the output is disabled and the setpoint is zeroed.

SAVE OR RECALL SETTINGS

Press to access the Save/Recall Screen.

Under Save Settings to, press the blue text to toggle through the Profile options, select one, and then press the Save icon.

The following variables are saved:

<table>
<thead>
<tr>
<th>OPERATION SETTINGS</th>
<th>VI SCAN SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint</td>
<td>VI Start Current</td>
</tr>
<tr>
<td>Current Limit</td>
<td>VI Stop Current</td>
</tr>
<tr>
<td>Max Supply Voltage</td>
<td>VI Step Size</td>
</tr>
<tr>
<td>Cable Resistance</td>
<td>VI Time Interval</td>
</tr>
<tr>
<td>Display Brightness</td>
<td></td>
</tr>
<tr>
<td>Beeper Status</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18. Scan Screen

Figure 19. Save / Recall Screen

Under Recall Settings from, press the blue text to toggle through the saved Profile options, and then press the Recall icon to recall the saved settings. Select Factory to restore the settings to the factory defaults.
SETTINGS SCREEN

Press to access the Settings Screen

Move the slider bar on the touchscreen to change the display brightness. Press the blue text to toggle the Beeper on-off setting.

![Settings Screen](image)

Figure 20. Settings Screen

LOCK OR UNLOCK SETTINGS (OPTIONAL)

- **Settings are not locked.**
 This is the default. Critical values set with the Adjustment knob can be locked. Press to lock the settings.

- **Settings are locked.**
 Press to unlock the settings.

- **Settings are locked and password protected.**
 Locked settings that are password protected can only be locked and unlocked using a remote computer.

EXTERNAL MODULATION (EXT MOD) BNC

This is the external modulation input. The voltage input on this BNC sums with the DC value on the screen. The input impedance is 1 kΩ. To calculate the external modulation signal voltage, see the next section for the transfer function, and use the following equation:

\[V_{\text{EXT_MOD}} = \frac{I_{\text{SETPOINT}}}{\text{Transfer Function}} \]

If the external modulation input causes the driver to reach the current limit, the output signal will be clamped at the limit level but will not switch off.

The bandwidth of the Current Monitor is lower than the bandwidth of the output. To monitor the actual output waveform at high frequencies, connect an oscilloscope across the output pin on the MONITOR D-SUB, Pin 8 (positive), and Pin 9 (ground) while using the resistor test load.

CAUTION: Connect the oscilloscope across the test load only — never connect the oscilloscope across a quantum cascade laser.

EXTERNAL MODULATION BNC TRANSFER FUNCTIONS

The external modulation transfer function depends on the QCL instrument model and is as follows:

- **QCL500-LAB:** 0.1 A / V.
- **QCL1000-LAB:** 0.2 A / V.
- **QCL1500-LAB:** 0.3 A / V.
- **QCL2000-LAB:** 0.4 A / V.

The input range is always 0 – 5 V.
ADDITIONAL CAPABILITIES

ANALOG CURRENT MONITOR
This signal is the sum of the DC setpoint as shown on the screen and the external modulation input.

To monitor the analog current level:
1. Connect the Analog output Current Monitor (PIN 8) on the MONITOR D-SUB to an oscilloscope.
2. Connect an Analog Monitor Ground (PIN 7 or PIN 9) to oscilloscope ground.

SETPOINT CURRENT MONITOR
This is a reference only and can be off by as much as 5% when setpoint is >10% of full scale.

To monitor the setpoint current:
1. Measure the voltage on the Analog Setpoint Monitor (PIN 6).
2. Ground for that measurement is the Analog Monitor Ground (PIN 7 or PIN 9).

The setpoint monitor and analog current monitor transfer functions depend on the QCL instrument model and are all as follows:

- QCL500-LAB: 0.1 A / V.
- QCL1000-LAB: 0.2 A / V.
- QCL1500-LAB: 0.3 A / V.
- QCL2000-LAB: 0.4 A / V.

The input range is always 0 – 5 V.

ALIGNMENT LED DRIVE
+5 V, up to 250 mA sourced.

To drive an alignment LED, on the MONITOR D-SUB
1. Connect an LED to the Alignment LED +5V (PIN 1).
2. Ground the LED at the Alignment LED Ground (PIN 2).

ENABLE STATUS INDICATOR
This is a +5 V TTL indicator. If current to the QCL output is enabled, the voltage between PIN 3 and PIN 4 on the MONITORS D-SUB will be low. It will be high if current is disabled.

USE THE TRIGGER SIGNAL
A trigger signal is provided so that external measurement equipment can be synchronized with laser current. Exactly 10 msec after a remote change in setpoint, a 20 µsec positive going pulse appears on the Trigger BNC plug.

To use the Trigger, connect a BNC cable to the TRIGGER BNC output.
REMOTE OPERATING INSTRUCTIONS

The following instructions are for QCL LAB Series instruments running firmware version 0.79 and earlier. These use Wavelength’s QuickConnect Application for remote operation.

INSTALL THE LAB QUICKCONNECT APPLICATION SOFTWARE

The QuickConnect software is necessary for remote operation of the instrument. The software can be installed on the remote computer from either the USB flash drive included with your instrument or from the Wavelength website.

- On the USB flash drive, the software is located in the \setup folder.
- On the Wavelength website, the link to the software is located at http://www.teamwavelength.com/support/software.php.

NOTE: .NET 4.5 software is required to run the application. If it is not currently installed on the remote computer, it will be installed automatically when you insert the flash drive.

TO INSTALL THE SOFTWARE

1. From the USB flash drive or the Wavelength website and in the file dialog box, select the software version that corresponds to your computer system type, either 32-bit or 64-bit. NOTE: If the incorrect system type is selected, an error message will appear and the software will not install.
2. Click the computer system’s setupxx.exe file, where “xx” refers to the system type. The Preparing to Install dialog box opens and the software automatically extracts the file.
3. On the Welcome window, click Next.
4. On the Destination Folder window, click Next to accept the default Wavelength folder or Change to select a different folder. When the new folder has been selected, click Next.
5. On the Ready to Install window, review the settings, click Install.
7. On the Completed window, select the Launch the program checkbox to open the application and then click Finish.

CONNECT AN INSTRUMENT TO A REMOTE COMPUTER

1. Connect the QCL instrument to a power source. See the Stand Alone operation instructions on page 11 for more information.
2. Connect the instrument to the computer using a USB or Ethernet cable. If connecting more than one instrument, a USB or Ethernet hub may be required.
3. Turn on the rear panel Power switch. The front panel Power button pulses blue.
4. Turn on the front panel Power button. The button glows steadily blue and the touchscreen activates.

ACCESS THE INSTRUMENT ON A REMOTE COMPUTER

1. On the computer and from the Start Menu, click All Programs, then click Wavelength Electronics, and then LAB QuickConnect. The LAB QuickConnect Application window opens.
2. In the LAB QuickConnect Application window, click Open Instrument.
3. In the Choose Instrument To Open window, select the instrument to connect to and click Open.

4. In the Include USB Devices window

NOTES:

- The Include USB Devices checkbox is selected by default and any powered instruments currently connected to the computer via a USB cable appear in the list.
- If you are unsure which instrument to select, on the instrument, swipe the touchscreen firmly from left to right. The instrument details screen, including the serial number, appears.
- Instruments that are connected to subnets can be added to the list.

1. Select the Include Network Devices checkbox, add the IP address or host name of the subnet, and then click Add Host.
2. Click Refresh. Any instruments connected to that subnet appear in the list.
Figure 21. Include Network Devices window

3. On the **Instrument Operation** tab, in the lower left, click **Seize**. Control of the instrument will transfer from the instrument to the computer and a screen of all editable fields appears. The computer screen is editable and the instrument screen is not.

NOTE: One instrument can be controlled remotely at a time.

CHANGE THE TURN-ON DELAY

The default delay between the time the current to the laser is enabled and the current actually flows is 2 seconds. This turn-on delay can be set to a minimum of 0 seconds and a maximum of 5 seconds.

1. On the **Operation Tab**, click on the blue text below **Turn-On Delay**.
2. Change the value and tab to a new editable field to save the change.

CONTEXTUAL HELP

At any time, contextual Help Information appears on the right side of the window when the pointer is placed over a button or screen element. Technical Support information, such as the instrument serial number and Wavelength contact information is available when the pointer is placed over the grey frame surrounding the window.

SUPER USER VS. NORMAL USER PERMISSIONS

There are two levels of permissions when modifying the instrument controls, Super User and Normal User.

Super User: The Super User has the ability to modify any remote operation and to assign permissions for Normal Users. A password is required to access Super User features. Upon first sign in, the password entered is the new Super User password and is required for subsequent sign ins.

Normal User: The Normal User is primarily used for Local operation. The Super User can restrict access to specific inputs on the instrument.

ACCESS SUPER USER MODE

When control of the instrument is first seized, it is in Normal User mode.

1. On the **Instrument Operation** tab and at the bottom, click **Super User**.
2. Type the password in the text box and click **OK**. Select the **Show Password** checkbox to type the password as text.

NOTE: Upon first sign in, the password typed becomes the password for subsequent sign ins.
EDIT INSTRUMENT PROFILES

Profiles can be edited in Super User mode or when Normal Users are not restricted from saving profiles.

1. In the Profile Editor Window and in the Available Profiles menu, select a profile. The factory default profile, Profile 0: Factory Default, cannot be changed.

2. Type values in the Profile Data boxes.

3. (Optional) In the Description Line 1 and 2, type a description of the profile. This text replaces the Save-Recall Profile text on the instrument. A maximum of 14 characters are saved.

4. (Optional) To grant Normal Users read-write permissions, select the appropriate checkbox.
 - Local User Can Save/Modify This Profile: Allows any user to change any preset profile value on the instrument.
 - Normal User Can Recall: Allows any user to recall preset profiles. This is selected by default.

5. Click Apply to Instrument and/or Save.
 - Click Apply to Instrument to change the values on the instrument but not save the changes to the Profile.
 - Click Save to save changes to the Profile but not change the values on the instrument.
 - Click Apply to Instrument and then Save, to apply changes to the instrument and then save the changes to the Profile.

EDIT ADVANCED OPTIONS

Advanced Options can only be edited in Super User mode.
CHANGE PERMISSIONS

Permissions can only be modified in Super User mode and apply only to Normal User mode.

1. Under Permissions, select Apply Restrictions To Instrument.

 NOTE: To apply the restriction changes to the instrument, this checkbox must be selected when the selections are saved.

2. Select the appropriate checkbox to restrict access to those values. Click All to select all the checkboxes or None to clear them. All restrictions apply to Normal Users when the instrument is in Normal User mode or when operated in local mode.

3. Click Save.

NOTES:

• Restrictions checkboxes can be selected and saved without applying the changes to the instrument.

• To apply the local Save Profile and Recall Profile options to the instrument, the local user Save/Modify and Recall checkboxes on the Profile Editor must also be checked, as well as the Apply Restrictions checkbox on the Advanced Options dialog box.

POWER INSTRUMENT ON OR OFF

The front panel can be turned on or off using a remote computer. When the front panel Power button is turned on, the button displays a blue circle and the screen displays all editable values on the instrument. When it is turned off, the screen is black and only the Power button, without the blue circle, is available. This is equivalent to pressing the front panel Power button.

• On the Instrument Operation tab, click the Power button.

Figure 27. Power button on
Figure 28. Power button off

CHANGE VALUES ON INSTRUMENT

Blue and yellow text denotes editable values, green and white text is not. Press TAB to move to the next editable field.

1. On the Instrument Operation tab, click the blue text to edit. The text turns yellow when in editing mode.

2. Tab to or click on blue text to edit the value.

NOTE: Tabbing to a new editable text field saves changes made to the previous value. Manually moving the cursor to a new field does not save the change, which reverts to the last saved value.

CHANGE SUPER USER PASSWORD

2. Type the password in the text box and click OK. Select the Show Password checkbox to type the password as text.

4. Type a new password and then click OK.

CHANGE NETWORK CONFIGURATION SETTINGS

Network configurations can only be changed in Super User mode.

1. Under Network Configurations, click Edit Network Configuration.

2. Type the new information into the text boxes and click Save.

Figure 29. Text color indicates ability to edit
ENABLE OR DISABLE CURRENT TO
THE LASER

Current to the laser can be enabled or disabled using a remote computer. When the current is enabled, the Enable button glows blue.

- On the Instrument Operation tab, click the Enable button.

![Enable button on](image1)
![Enable button off](image2)

RUN A VI SCAN

1. On the Instrument Operation tab, click the green arrow. A Specify Data File window opens.
2. Navigate to the location to save the scan data, name the file as desired, and click Save.
3. A new window opens showing the scan in progress.
 - To stop the scan, click Stop Scan. Data collected up to the point the scan was stopped is recorded in the data file.
4. To dismiss the scan window, click Close.

![VI Scan screen](image3)

END REMOTE OPERATION

Returning the instrument to local operation is accomplished one of two ways:

- On the instrument, tap Press For Local.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Potential Causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front panel Power button does not turn on</td>
<td>The button has been pushed on and off within 3 seconds.</td>
<td>The front panel Power button has a 3 second delay between when it is turned off and on in rapid succession. This is a safety mechanism to ensure there is no damage to either the QCL instrument or the attached load.</td>
</tr>
<tr>
<td></td>
<td>The rear panel switch is off.</td>
<td>Turn the rear panel switch to the on or position.</td>
</tr>
<tr>
<td>The Enable button does not turn on</td>
<td>The button has been turned on and off within 2 seconds.</td>
<td>The button cannot be pressed faster than every 2 seconds.</td>
</tr>
</tbody>
</table>
| | The QCL D-SUB interlock or Active Interlock connections are open, or the keyswitch is in the LOCKED position | • Make sure PIN 1 and PIN 2 on the QCL D-SUB are shorted.
• The “Active Lock” BNC connector may be open. Install a BNC shorting plug.
• Rotate the key to the UNLOCKED position. |
<p>| | The instrument experienced an internal fault. (See Error Messages on page 24.) | The instrument will remain disabled until manually powered off and then on using the rear panel power switch. |
| | The instrument heatsink temperature has exceeded 70ºC. | Allow the instrument to cool down and then press the front panel power button. |
| | The front panel Power button is not on. | Press the Power button on the front panel to enable the display. |
| The instrument is on but the front panel display is blank | The instrument experienced an internal fault. (See Error Messages on page 24.) | Switch the back panel power button off and then on again, and turn the front panel power button on. |
| | The internal temperature has reached an unsafe level. | Allow the instrument to cool down and then switch the back panel power button off and then on again, and turn the front panel power button on. |
| | The front panel Power button is pulsing on and off in standby mode. | Press the Power button on the front panel to enable the display. |
| The date and time on my VI scan file are wrong | | The QCL instrument does not have a realtime clock. When a VI scan file is created, the date and time stamp are randomly chosen. |
| The VI scan files are not in the order that they were created | Some files may have been deleted off of the USB flash drive. | When files are deleted off of the USB flash drive and new files are saved to it, the new files are given sequentially the names of the deleted files. |
| Unable to create new VI scans | The interlocks may not be satisfied. | Turn the keyswitch to UNLOCKED, or install the ACTIVE LOCK BNC and passive interlocks. |
| | There are too many files on the USB flash drive. | Delete files from the USB flash drive. |
| I can’t find my VI scan files | VI scan files are named sequentially. | If files have been deleted from the flash drive, any new files added are named sequentially and have the names of the deleted files. |
| The fan keeps coming on | The internal temperature is being regulated. | To reduce internal heat generation, choose a lower supply voltage. The instrument will shut down if the internal temperature gets too hot. |</p>
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POTENTIAL CAUSES</th>
<th>SOLUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The output switched off unexpectedly</td>
<td>The instrument detected an internal error. (See Error Messages on page 24.) The internal temperature has exceeded 70ºC.</td>
<td>Switch the back panel power button off and then on again, and turn the front panel power button on. Allow the instrument to cool down and then press the front panel power button.</td>
</tr>
<tr>
<td>20 kHz noise is in the output current</td>
<td>QCL driver is operating in current limit. If I run my QCL at about 5% of maximum output current, the transfer function becomes non-linear and I see distortion in my output current waveform. QCL driver resolution is too low.</td>
<td>If safe for the quantum cascade laser, increase the output current limit setting. When actively operating in current limit, the safety circuits add noise to the output. Select a QCL driver with a much lower maximum output current. For example, to run 50 mA, request a QCL125 (125 mA maximum output).</td>
</tr>
<tr>
<td>My instrument doesn’t show up in the list. (Remote Only)</td>
<td>Your instrument may not be turned on. Your instrument may not be plugged in to the computer. Your instrument may be on a different sub-net.</td>
<td>Power up the instrument and click Refresh on the Choose Instrument window. Check that either a USB or Ethernet cable is tightly connected to the instrument and to the computer. Add the sub-net to the Choose Instrument window and then click Refresh.</td>
</tr>
<tr>
<td>Actual current does not match the setpoint.</td>
<td>The setpoint exceeds the limit current setting. The QCL is compliance voltage limited.</td>
<td>If the limit current can be increased without damage to the QCL, increase the limit current setting. Increase the Max Supply Voltage slightly to see if actual current increases. Follow the instructions on page 25 to optimally set the Max Supply Voltage.</td>
</tr>
</tbody>
</table>
Table 6. Error Messages

To clear error text, fix the cause then press any icon or the Enable button.

<table>
<thead>
<tr>
<th>ERROR</th>
<th>POTENTIAL CAUSES</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The USB flash drive is missing or not accessible. Please make sure that a USB flash drive is inserted into the front panel.</td>
<td>To run a local VI scan, a USB flash drive must be in place.</td>
<td>Insert a USB flash drive in the data port on the front panel.</td>
</tr>
<tr>
<td>The USB flash drive was removed. The scan has been aborted.</td>
<td>To run a local VI scan, a USB flash drive must be in place.</td>
<td>Insert a USB flash drive in the data port on the front panel.</td>
</tr>
<tr>
<td>Output current is disabled. The keyswitch is in the locked position.</td>
<td>The keyswitch is horizontal or in the locked position.</td>
<td>Turn the keyswitch to the vertical or unlocked position.</td>
</tr>
<tr>
<td>Output current disabled. Pins 1 & 2 on the QCL D-SUB are not tied.</td>
<td>The passive interlock is not shorted.</td>
<td>Short Pin 1 and Pin 2 on the QCL D-SUB.</td>
</tr>
<tr>
<td>Output current disabled. The Active Interlock is not shorted.</td>
<td>The active interlock is not grounded.</td>
<td>Ground the center pin of the Active Lock BNC.</td>
</tr>
<tr>
<td>The internal temperature limit of the instrument has been exceeded. Output current has been disabled to protect the laser.</td>
<td>The ambient air temperature is too high for the instrument.</td>
<td>Reduce the ambient air temperature to 50ºC or less.</td>
</tr>
<tr>
<td>The VI scan was canceled by the user.</td>
<td>The Stop button was pressed during the scan.</td>
<td></td>
</tr>
<tr>
<td>Scan was canceled because output current is disabled.</td>
<td>The Enable button was pressed during a scan, cutting current to the load.</td>
<td></td>
</tr>
<tr>
<td>An open circuit was detected at the load. Please verify the load and load connections.</td>
<td>The instrument cannot drive current through the load.</td>
<td>Make sure the QCL SMA or Pins 5 & 9 of the QCL D-SUB are connected.</td>
</tr>
<tr>
<td>A short circuit was detected at the load terminals. Please verify the load and load connections.</td>
<td>The instrument is detecting that there is no resistance where the load should be.</td>
<td>Make sure the QCL SMA or Pins 5 & 9 of the QCL D-SUB are connected.</td>
</tr>
<tr>
<td>An internal error occurred while reading data from hardware. Please contact the factory for further assistance.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A timeout occurred waiting for output. Make sure the load is connected and interlocks are satisfied.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>An internal error was detected. Please contact the factory for further assistance.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A fault in the internal +5V supply was detected. Please contact the factory.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A fault in the internal +15V supply was detected. Please contact the factory.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A fault in the internal -15V supply was detected. Please contact the factory.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A timeout occurred waiting for the internal load power supply to stabilize. Please contact the factory.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A problem has been detected in the instrument power supply. Please contact the factory for further assistance.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
<tr>
<td>A current surge has been detected in the instrument. Output has been disabled to protect the laser.</td>
<td></td>
<td>Contact Wavelength technical support for further assistance.</td>
</tr>
</tbody>
</table>
ADDITIONAL TECHNICAL NOTES

This section includes useful technical information on these topics:

- Reduce internal temperature or provide compliance voltage limit
- Use Passive and Active interlocks
- Soft-clamp current limit
- Square wave response
- Remove the bail and feet from an instrument
- Update firmware
- Determine firmware version installed

REDUCE INTERNAL TEMPERATURE OR PROVIDE COMPLIANCE VOLTAGE LIMIT

At full current, the Maximum Compliance Voltage available to the QCL is about 7.5 V below the maximum supply voltage. This 7.5 V estimate decreases as operating current decreases. To determine the best internal supply voltage for your application, follow these steps:

1. Wire your QCL to the instrument and adjust the current limit on the Limit screen and setpoint on the Control screen for your application.
2. Press the Enable button to enable the output current. The actual current displayed should match the setpoint.
3. On the Limit screen, select the blue MAX Supply Voltage value and, using the Adjustment knob, adjust it down slowly until the actual current starts to decrease. The QCL current is now limited by the compliance voltage of the instrument.
4. Using the Adjustment knob, now increase the MAX Supply Voltage value until the current is no longer below the setpoint. This is the optimal maximum supply voltage for your setup.
5. On the Monitor screen, observe the QCL Voltage. This is the voltage across the QCL at this operating current and is the effective voltage limit to the QCL for your setup.

NOTE: If you reach 18 V on the MAX Supply Voltage input and the current is still not compliance voltage limited, the instrument is operating at its lowest voltage and the voltage limit cannot be reduced further.

USE PASSIVE AND ACTIVE INTERLOCKS

The passive interlock is designed to trigger if Pins 1 and 2 on the QCL D-SUB are not shorted. Use this interlock with doors and enclosures that trigger an open circuit when opened.

The active interlock (ACTIVE LOCK BNC) can be used with a temperature controller or other active system component to disable the current output if the QCL exceeds an acceptable temperature operating range.

SOFT-CLAMP CURRENT LIMIT

The QCL driver employs a soft-clamping current limit that begins to act at a current lower than the calculated absolute current limit.

The Limit Current is the absolute current limit, which is the current that will not be exceeded under any circumstance.

Because of the soft-clamp circuit, the actual current where the limit circuit begins to act is 20% below the absolute current limit.

If the output current is between this point and the Absolute Current Limit, the output response to the analog input setpoint is nonlinear. The result is that the drive current will asymptotically approach the absolute current limit, and will never exceed it even if the external modulation setpoint voltage far exceeds the current limit.

Figure 33 illustrates the behavior of the soft-clamp current limit. In this case the analog input voltage setpoint signal is a triangle wave, with the amplitude set so that the driver will attempt to overdrive the current limit.
SQUARE WAVE RESPONSE

Figure 34 and Figure 35 illustrate the modulation response of the QCL1500 driven at 1.15 A into a 10 Ω test load.

UPDATE THE INSTRUMENT FIRMWARE

Updates to the instrument firmware are available on the Wavelength website.

1. Turn the instrument completely off at both the front and rear panels.
2. On the Wavelength website, download the ZIP file that is specific to your QCL Laboratory Series model and save the update file to a flash drive.

The file is found at:
http://www.teamwavelength.com/support/software.php

3. Extract the file on the flash drive. It should contain the following files:
 \INSTALL.INI
 \QCLxx\ABL.IMG
 \QCLxx\APP.IMG
 \QCLxx\INSTALL.INI

NOTE: “QCLxx” is replaced with the instrument model number, such as QCL2000.

4. Insert the flash drive into the front DATA port on the instrument. Turn rear panel power on. The update automatically begins installation.

5. At the Apply the firmware screen, press Yes. The firmware update installs. Remove the flash drive.

6. Once the update is complete, press OK and reboot the instrument by turning off the front and rear panel power buttons and turning them back on again.

If you are upgrading from version 0.79 to version 1.5+, all calibration and user data will be converted and saved. If you downgrade from version 1.5+ to version 0.79, all existing calibration data will be lost.

DETERMINE WHICH FIRMWARE VERSION IS INSTALLED

With the rear and front panel power switches on, swipe the touchscreen from left to right to show the System Information screen.

REMOVE THE BAIL AND FEET FROM AN INSTRUMENT

To make sure there is the proper clearance between stacked instruments when rack mounting, the feet and bail must be removed.

On the underside of the instrument, using a Phillips head screwdriver, unscrew the four rubber feet.

REMOVE THE BAIL AND FEET FROM AN INSTRUMENT

To make sure there is the proper clearance between stacked instruments when rack mounting, the feet and bail must be removed.

On the underside of the instrument, using a Phillips head screwdriver, unscrew the four rubber feet.

Figure 36. System Information Screen
Dimensions are in inches [mm].
Tolerance is ±5%.
CE DECLARATION OF CONFORMITY

CONFORMING PRODUCTS

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCL500-LAB</td>
<td>500 mA QCL Driver Laboratory Instrument</td>
</tr>
<tr>
<td>QCL1000-LAB</td>
<td>1000 mA QCL Driver Laboratory Instrument</td>
</tr>
<tr>
<td>QCL1500-LAB</td>
<td>1500 mA QCL Driver Laboratory Instrument</td>
</tr>
<tr>
<td>QCL2000-LAB</td>
<td>2000 mA QCL Driver Laboratory Instrument</td>
</tr>
</tbody>
</table>

DECLARATION

The undersigned hereby declares, on behalf of Wavelength Electronics, Inc. (Wavelength) of Bozeman, Montana, that the products listed in the table above, to which this Declaration applies, are in conformity with the provisions of:

APPLICABLE REGULATIONS

 - IEC 61000-3-2 and IEC 61000-3-3
 - IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, and IEC 61000-4-8
 - IEC 61010-1

TECHNICAL FILE

The Technical Construction Files for the listed products, as required by this Declaration, are maintained at Wavelength corporate headquarters: 51 Evergreen Drive, Bozeman, Montana.

Mary Johnson, CEO
8-Jul-16
CERTIFICATION

Wavelength Electronics, Inc. (Wavelength) certifies that this product met its published specifications at the time of shipment. Wavelength further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by that organization’s calibration facilities, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Wavelength product is warranted against defects in materials and workmanship for a period of one (1) year from date of shipment. During the warranty period, Wavelength will, at its option, either repair or replace products which prove to be defective. Warranty is void if label is removed from back panel.

WARRANTY SERVICE

For warranty service or repair, this product must be returned to the factory. An RMA is required for products returned to Wavelength for warranty service. The Buyer shall prepay shipping charges to Wavelength and Wavelength shall pay shipping charges to return the product to the Buyer upon determination of defective materials or workmanship. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Wavelength from another country.

LIMITATIONS OF WARRANTY

The warranty shall not apply to defects resulting from improper use or misuse of the product or operation outside published specifications. Warranty for the QCL instrument is invalid if the instrument cover has been removed for any reason. No other warranty is expressed or implied. Wavelength specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES

The remedies provided herein are the Buyer’s sole and exclusive remedies. Wavelength shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

REVERSE ENGINEERING PROHIBITED

Buyer, End-User, or Third-Party Reseller are expressly prohibited from reverse engineering, decompiling, or disassembling this product.

NOTICE

The information contained in this document is subject to change without notice. Wavelength will not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. No part of this document may be translated to another language without the prior written consent of Wavelength.

SAFETY

There are no user-serviceable parts inside this product. Return the product to Wavelength Electronics for service and repair to ensure that safety features are maintained.

LIFE SUPPORT POLICY

This important safety information applies to all Wavelength electrical and electronic products and accessories:

As a general policy, Wavelength Electronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the Wavelength product can be reasonably expected to cause failure of the life support device or to significantly affect its safety or effectiveness. Wavelength will not knowingly sell its products for use in such applications unless it receives written assurances satisfactory to Wavelength that the risks of injury or damage have been minimized, the customer assumes all such risks, and there is no product liability for Wavelength. Examples of devices considered to be life support devices are:

- Neonatal oxygen analyzers, nerve stimulators (for any use), auto-transfusion devices, blood pumps, defibrillators, arrhythmia detectors and alarms, pacemakers, hemodialysis systems, peritoneal dialysis systems, ventilators of all types, and infusion pumps as well as other devices designated as “critical” by the FDA.

The above are representative examples only and are not intended to be conclusive or exclusive of any other life support device.

TECHNICAL SUPPORT & CONTACT INFORMATION

WAVELENGTH ELECTRONICS
51 Evergreen Drive
Bozeman, Montana 59771
406-587-4910 (tel)
406-587-4911 (fax)

Sales & Tech Support
sales@teamWavelength.com
technicalsupport@teamWavelength.com

REVISION HISTORY

Document Number: QCL1000-LA400

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>19-Jan-15</td>
<td>Updated Specs</td>
</tr>
<tr>
<td>E</td>
<td>Apr 2015</td>
<td>Updated Transfer Functions, Fuse Installation</td>
</tr>
<tr>
<td>F</td>
<td>November 2015</td>
<td>Clarified transfer functions</td>
</tr>
<tr>
<td>G</td>
<td>July 2016</td>
<td>Updated CE Declaration of Conformity</td>
</tr>
<tr>
<td>G2</td>
<td>December 2016</td>
<td>Added version information</td>
</tr>
</tbody>
</table>