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Abstract: In this paper, a near-infrared NH3 sensor is developed using Wave-length Modulated 
Off-Axis Integrated Cavity Output Spectroscopy (WM-OA-ICOS) technology. Design a cavity 
with a length of 15 cm and an effective absorption diameter of 330.5 m. The Ensemble 
Empirical Mode Decomposition (EEMD) algorithm is adopted as the spectra preprocessing 
method to reduce the noise, and Allan deviation analysis is conducted by comparing the original 
signal. It is found that the limit of detection (LoD) of the sensor could reach ~1.54 ppb with an 
integration time of 43 s. The concentration calibration experiment shows that the sensor can 
achieve double range. To enhance accuracy and sensitivity in NH3 concentration inversion, the 
Cuckoo Search algorithm with the Elman neural network (CS-Elman) was designed. Through 
experimental validation, the sensor achieves rapid detection of trace NH3. The outstanding 
performance of the NH3 detection device in monitoring trace gases has been demonstrated by 
field deployment trials. 

 

1. Introduction 
Ammonia(NH3) is an inorganic compound, a colorless gas with a strong irritating odor. 
Agricultural emissions represent one of the primary sources of NH3 in the atmosphere [1-3]. 
Since the 1980s and 1990s, three catalysts have been added to gasoline, increasing NH3 
emissions in urban environments. The United States Department of Labor Occupational Safety 
and Health Administration (OSHA) regulations of indoor NH3 allowable concentration of 50 
ppm. The Indoor Air Quality Standard stipulates that the maximum allowable concentration of 
NH3 in indoor air is 0.2 mg/m3 (0.2635ppm); The maximum allowable concentration of harmful 
substances in the air of the workshop in the Health Standard for Industrial Enterprise Design is 
30 mg/m3 (39.53ppm) of NH3. As can be seen from the above emission standard requirements, 
the NH3 concentration range detected in the indoor air should be 0~10 ppm, and the NH3 
concentration range detected in the workshop air should be 0~100 ppm. Therefore, the 
development of an efficient, real-time, and high-precision NH3 detection sensor is essential to 
ensure public health [4]. However, the concentration of NH3 gas in the air is extremely low, so 
it is necessary to develop an efficient, real-time, and high-precision NH3 sensor for atmospheric 
detection. 

With the rapid development of laser spectroscopy, many techniques are widely used for 
trace gas detection, such as: Tunable Diode Laser Absorption Spectroscopy, Cavity Ring-down 
Spectroscopy, and Cavity-enhanced Absorption Spectroscopy (CEAS). Among them, CEAS 
technology has received widespread attention for its robustness, high detection accuracy and 



fast analysis speeds. OA-ICOS technology originated from CEAS technology [5]. It effectively 
reduces the interference and fluctuations caused by multiple reflections of light in the cavity 
[6-9], and the cavity mode noise is effectively suppressed. Moreover in the case of off-axis 
incidence, the energy of the original single fundamental mode is distributed among many 
higher-order transverse modes, which results in very weak output power detected by the 
detector Improving the device's signal-to-noise ratio (SNR) is challenging due to limitations in 
laser power and detector sensitivity. Therefore, introducing wavelength modulation 
spectroscopy [10-11] can effectively suppress low-frequency noise and further improve the 
SNR of the sensor. 

In 2002, an OA-ICOS instrument based on a DFB diode laser was reported for sensitive CO 
measurement. In the integration time of 50 seconds, the minimum detectable absorptivity when 
the effective optical path is 4.2 km is 3.1 × 10-11 cm-1 Hz-1/2 [12]. In 2004, Bakhirkin et al. used 
Wave-length modulated off-axis integrating cavity output spectroscopy (WMS-OA-ICOS) and 
OA-ICOS techniques respectively to detect the concentration of NO in respiratory gas, and the 
experiment found that the sensitivity of the former was 5 times that of the latter l971 [13]. In 
2012, Malara et al. used OA-ICOS and WMS-OA-ICOS to measure the concentration of CH4 
in the atmosphere, and found that WMS-OA-ICOS was mainly affected by the laser scanning 
frequency, and the enhancement multiple was related to the reflectivity of the cavity mirror 
used [14]. An increased absorption path is achieved by most reported OA-ICOS systems by 
using a longer cavity length (> 30 cm). However, the increased cavity length, while facilitating 
longer absorption paths, also poses challenges for system integration and beam coupling within 
the cavity. At the same time, they did not discuss the inversion of weak signal concentration.  

In this paper, a small 15 cm detachable cavity is designed. A DFB laser with an emission 
wavelength of 1531.7nm was selected, specifically targeting the NH3 absorption line located at 
6528.27cm-1. Simultaneously, in order to effectively suppress low-frequency noise, combining 
WMS and OA-ICOS techniques.  The data processing system is based on the LabVIEW 
platform. It is composed of orthogonal phase-locked amplifier module, signal acquisition 
module, and scanning modulation signal generation module. This enables the sensor to perform 
routine operations including DFB laser actuation and also to acquire NH3 harmonic signals 
from absorption spectra using a laptop and data acquisition card (DAQ). Using EEMD 
technique to pre-process the raw signals of ammonia spectra. In order to improve the sensitivity 
and accuracy of NH3 concentration inversion, a method combining the Cuckoo search 
algorithm (CS) and Elman neural network is designed. It has higher test accuracy and anti-
interference compared with other detection sensors. The sensor can be used for atmospheric 
environment measurement, which has important application value for the detection of NH3 in 
atmospheric environment.  

 
Fig. 1. (a) Sources of NH3; (b) Sensor side view; (c) The main structure of the cavity; (d) 

Optical path structure of NH3 detection sensor based on OA-ICOS; (e) Photograph of the NH3 
sensor; (f) Diagram depicting the NH3 detection sensor utilizing a virtual instrument platform. 

Sensor Configuration 



The main sources of NH3 in the atmosphere and the main components of haze are shown in Fig. 
1(a). In order to measure the content of ammonia in the atmosphere, an ammonia detection 
sensor is built. Fig. 1(b) are structural diagrams of the detection device. Fig. 1(d) shows the 
optical part. The sensor diagram is shown in Fig. 1(e). As shown in Fig. 1(f), the gas processing 
part, the optical part, and the electrical part are included in the experimental setup.  

In the optical part, use Solidworks to design the removable cavity, through the sealing flange 
for sealing and fixing the cavity and the main frame, to avoid the error caused by the 
displacement of the cavity in the welding process, the total length of the cavity is 150 mm, the 
overall structure is shown in Fig. 1(c). After testing, the cavity sealing and stability is better. 

The absorption spectrum of NH3 gas in the range of 5882.35~6666.67cm-1 is shown in Fig. 
2(a). In order to eliminate interference from H2O and CO2, the NH3 absorption peak with low 
interference at a center wavelength of 6528.27cm-1 was selected as the best target line. 
Simulation of the absorption spectra of 1 ppm NH3 and ambient concentrations of H2O and 
CO2, as depicted in Fig. 2(b). Among them, the low interference NH3 absorption peak centered 
at 6528.27 cm-1 was identified as the optimal absorption line. Therefore, using a 1531.7 nm 
DFB laser to detect NH3, lock the NH3 absorption line at 6528.27cm-1. The relationship between 
optical power and wavelength under different driving currents is measured. The measured W-
I (wavelength-current) and P-I (power-current) curves are shown in Fig. 2(c). 

In the electrical part, it mainly consists of three electronic components: a laptop computer 
(LENOVO, YOGA710), a DAQ card (Measurement Computing, USB-1808X), and a constant 
current source module (Wavelength Electronics, LDTC0520). The analog output module of the 
data acquisition card controlled by LabVIEW generates a combined waveform of a high 
frequency sine wave (7.8 kHz) and a low frequency sawtooth wave (5 Hz), which provides a 
current source to make the DFB laser emit light. The Quadrature lock-in amplifier and memory 
module developed on the LabVIEW platform reduce noise by processing 10 times the average. 
In the sensor, EEMD and CS-Elman algorithms are integrated respectively for spectrum 
preprocessing and concentration inversion.  

 

Fig. 2. (a) Absorption bands of 1 ppm NH3 in the range of 6500cm-1 to 6666cm-1 at 1 atm, 296K, and 300 m optical 
paths; (b) Absorption lines of 1 ppmNH3, 1% H2O, 400 ppm CO2 at 6528.27 cm-1 at 1 atm, 296K and 300 m optical 

path; (c) Graph of response of current to wavelength and optical power. 

Optical and 1/f noise processing 
3.1 Cavity mode noise processing 

A key challenge in the output absorption spectroscopy of off-axis integrating cavities lies in 
the signal interference caused by light intensity fluctuations due to interference in F-P 
cavities, a phenomenon commonly referred to as cavity mode noise, which significantly limits 
the high sensitivity performance of the system [15]. Assuming that N is the number of lasers 
coupled into the cavity per second at an integration time T, the signal collected by the 
detector contains TN transmission peaks; when the frequency of the scanning signal is f and 
the number of couplings into the cavity is n, the number of laser couplings into the cavity per 
second is N=2fn. The relative dispersion ξ of a single transmission peak is related to the laser 
modulation frequency, which takes values between 0.15 and 0.5 for the noise magnitude [16]: 
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Then increasing the mode of the laser in the optical resonant cavity reduces the cavity film 
noise, which can be achieved by using off-axis incidence. In order to ensure that the beam can 
be reflected repeatedly in the cavity when using off-axis incidence, the re-entrant condition 
must be met, when the number of cavity moulds is enough, the result of integrating the cavities 
can be analogous  to a Herriott or White pool,an ellipse-like pattern is formed on the lens. In 
the case of satisfying the resonant cavity stability condition, the re-entrant condition is 
expressed as: 
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When n is set to an integer, the FSR is 1/m times the original, and the value of m is affected 
by both spot size and lens size. In the case of off-axis incidence, when the FSR is close to zero, 
the mode density inside the cavity rises sharply, making the light propagation nearly continuous, 
and the original cavity mode structure is almost difficult to be recognised. Under this situation, 
the cavity mode noise is effectively suppressed. 

After off-axis processing, the system will still have some residual cavity mode noise and 
because the output signal from the off-axis integrating cavity is weak, the absorption spectrum 
detected by the detector is weak and often accompanied by random noise, which distorts the 
ammonia spectrum and affects the detection limit of the sensor. In order to enhance the 
robustness of the sensor, pre-processing of the raw signals obtained from the ammonia spectra 
is essential, and this process can be implemented by relying on techniques and algorithms of 
digital signal processing。 In this paper applying the EEMD (Ensemble Empirical Mode 
Decomposition) technique [17-18]. 

The EEMD [19-23] decomposition steps are as follows: 
(1) The overall average number M is defined. 
(2) To generate a new signal, a standard plus distribution of white noise is added to the 

original signal. 

( ) ( ) ( ), 1, 2,...i ix t x t n t i M= + = ，                                                  (3) 
In the equation, ( )in t  is the original signal.   is representative of the i-th addition of white 

noise sequence, while ( )ix t  denotes the i-th experimental attachment of noise signal 
(3) The resulting noise signals are decomposed separately by EMD, and the forms of their 

respective IMF sums are obtained: 
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In the equation, , ( )i jg t  is the j- th IMF, , ( )i jg t  decomposed after adding white noise for the 

i-th time. It represents the residual function, which is the average trend of the signal. J  is the 
number of IMFs. 

(4) Iteratively perform steps (2) and (3) M times, incorporating varying amplitudes of white 
noise into each decomposition to derive the set of IMF: 
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                                           (5) 
(5) The above corresponding IMF sets are averaged, and by adopting the principle that the 

average value of uncorrelated sequences is zero, the IMF decomposed by EEMD is finally 
obtained, that is: 
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In the formula, ( )jg t  is the jth IMF decomposed by EEMD. 

3.2 1/f noise processing 

In the case of off-axis incidence, the energy of the original single fundamental mode is 
distributed into many higher-order transverse modes,lead to the output power detected by the 
detector is very weak, and the signal-to-noise ratio of the device is difficult to improve due to 
the limitation of the laser power and the sensitivity of the detector. Lasers and detectors will 
introduce 1/f noise into the measurement results, and the characteristics of this noise is that 
the lower the frequency, the higher the noise, so the introduction of wavelength modulation 
spectroscopy (WMS) to effectively suppress the low-frequency noise, and further improve the 
sensor signal-to-noise ratio. 

When the laser is injected with a sinusoidal modulated current of frequency f, the laser's 
emitted light intensity and wave number change at the same time, and the light intensity ( )0I t  
and wave number ( )v t  can be expressed as follows: 
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G  denotes the amplification factor of the detector; 0I  represents the intensity of the laser 
light when unmodulated; ki  is the Fourier coefficient for k modulations of the laser intensity; 

kψ  represents the phase change of the modulated light intensity of the kth order; 1v  represents 
the centre wavelength of the laser emission; na  represents the depth of the nth modulation; nϕ  
represents the phase corresponding to the nth modulation. 

The spectral absorptivity ( )tα , can be expanded according to the Beer-Lambert law into a 
Fourier series with frequency f as the fundamental frequency: 

( ) ( ) ( )
0

cos 2 sin 2 ,k k
k

t M k ft N k ftα π π
∞

=

= ⋅ + ⋅  ∑                                    (8) 

kM  and kN  are the kth Fourier coefficients, denoted as 
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Using digital phase-locking technology to obtain the harmonic signals of light intensity at 
a specific modulation frequency, separate the light intensity signals and demodulate them by 
multiplying by cos(n) and sin(n), using a low-pass filter to filter out high-frequency noise to 
obtain the X and Y components of the nth harmonic signal, to provide a reliable basis for 
subsequent data analysis and processing. 
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When there is no absorption that means m=n and n=0, we substitute to get: 
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Compare and represent the raw harmonic amplitude with the harmonic amplitude after 
subtracting the background: 
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Perform a normalisation operation to deduct the harmonic amplitudes in the background 
signal: 
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From the above equation, the harmonic amplitude obtained is mainly related to the 
absorption, which effectively improves the sensor signal-to-noise ratio, and the subsequent use 
of phase-locked amplifiers for harmonic signal extraction. 

2. Performance verification  

 

Fig. 3. (a) Absorption spectra of NH3 near 6528.27cm-1 and fitting baseline; (b) Sensor-recorded raw 2f signals; (c) 
Signals recorded and filtered using EMD; (d) Signals recorded and filtered using EEMD. 

TABLE 1. SNR Comparison 

Algorithms SNR 
10 ppm 5 ppm 2 ppm 

Raw 2f signal 16.49  14.57 12.05 
EMD 35.27 30.05 24.27 
EEMD 53.57 51.49 50.26 

4.1 Calibration of effective optical path length and cavity mirror reflectivity 

To determine the effective optical path length and calibrate the mirror reflectivity of the cavity, 
a 5hz sawtooth signal is used for scanning. A 1531.7 nm DFB was used to lock the NH3 
absorption line at 6528.27 cm-1, with a NH3 sample concentration level of 10 ppmv introduced 
into the off-axis integrated cavity. As shown in Fig. 3(a), the differential signal can be obtained 
by subtracting the background-fitted signal from the absorption signal. The maximum 
absorption occurs at t=0.11 s, with an absorption signal corresponding to a voltage of 0.073 V, 
and a voltage of 0.079 V at non-absorption regions. The output voltage, input current, and 
output optical power all exhibit linear response with acquisition time, so absorbance (A) can be 
calculated using equation 14. 
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The absorbance was determined to be 0.0789 by calculation. According to the HITRAN 
molecular absorption database, the actual total optical path length is determined to be 330.5 m. 
Using the actual optical path length, the effective reflectivity of the high-reflectance mirror can 



be reverse-engineered. Through computation, the calibrated reflectivity of the cavity mirror is 
found to be 99.95%. 

4.2 Filtering performances using EEMD signal-processing 

In order to test the practical denoising effect of the EEMD algorithm, partial gas experiments 
were first conducted, and the original 2f signals were collected and compared with the filtered 
signals to evaluate their SNR. N2 gas with NH3 concentrations of 10, 5, and 2 ppmv was 
detected using an automated gas distribution system. The collected original signals, EMD-
filtered signals, and EEMD-filtered signals are shown in Fig. 3.(b) (c) and (d). The original 
signal contains obvious noise as can be seen from Figure 8. The SNR of the original 2f signals 
and the denoised 2f signals after EEMD filtering are calculated according to the formula and 
presented in Table I. Compared to the original signals, the SNR of the signals after EEMD 
filtering is significantly improved to varying degrees, indicating the effectiveness and 
superiority of this filtering algorithm in noise reduction. 

4.3 Concentration inversion calibration and data fitting 

The concentration calibration experiment utilized an automated gas distribution station with N2 
as carrier gas and dynamic mixing of NH3 in the concentration range of 10~100 ppm and 0.4~10 
ppm. During the calibration process, the gas progresses from lower experimental concentrations, 
with gradients and spectra processed by algorithms as shown in Fig. 4(a) and (b) respectively, 
while the relationship between average voltage and gas concentration is depicted in Fig. 4(c) 
and (d). 

Fig. 4(c) shows the sensor's exceptional linearity concerning NH3 within the concentration 
range of 0.4 ~ 10 ppm, yielding a robust linear relationship between NH3 concentration and the 
2f peak value. The combined linear coefficient R2 achieves a remarkable value of 0.9993, which 
is expressed as follows: 

( )7.6769 2 1.1606,y Max f= × +                                          (15) 
Furthermore, the linear relationship for the concentrations ranging of 10 ~ 100 ppm is 

illustrated by Fig. 4(d), with the linear coefficient R2 reaching 0.9981. Through curve fitting, 
the relationship between concentration and 2f peak can be expressed as follows: 

( )10.142 2 0.3802,y Max f= × +                                           (16) 

 

Fig. 4. (a) 0.4~10 ppm NH3 concentration gradient and measured spectra; (b) 10~100 ppm NH3 concentration 
gradient and measured spectra; (c) 0.4~10 ppm 2f amplitude and concentration linear fitting curve; (d) 10~100 ppm 

2f amplitude and concentration linear fitting curve.  

4.4 Comparison of concentration inversion algorithm results 

In this paper, the inversion model is provided by the Elman neural network [24-27]. To solve 
the slow training and potential local minimum trap while improving the generalization 
performance, the initial weights and thresholds of the network are optimized by the Cuckoo 
Search (CS) algorithm [28]. Finally, the concentration inversion prediction model of CS-Elman 
neural network (CS-Elman) is established. 

The concentration inversion was performed for the 2f signal of NH3 in the range of 0 ~ 10 
ppm and 0 ~ 100 ppm. The concentration retrieval performance of CS-Elman, BPNN, LSSVM 



and Elman algorithms is compared. NH3 gas spectra were modeled using a five-fold cross-
validation approach across both concentration ranges. Four folds were dedicated to training, 
leaving one for validation. The outcomes of this five-fold cross-validation method are 
demonstrated in Fig. 5(a) and (c), with the prediction results shown in Fig. 5(b) and (d). The 
predicted concentrations by the CS-Elman algorithm are closest to the true values with the 
smallest absolute error. 

Comparison results of linear correlation coefficient R², root mean square error (RMSE), and 
standard deviation between the predicted and actual concentrations obtained by different 
algorithms are shown in Table II and III. Error analysis after processing by the CS-Elman 
algorithm showed an improvement of 2 to 4 times compared to the other three algorithm models. 

 

Fig. 5. (a) Comparison chart of predicted values and set values of BPNN, LSSVM, ElmanNN and CS-Elman 
algorithms are in the range of NH3 concentration from 0 to 10 ppm; (b) Comparison of error between standard 

concentration and measured concentration for BPNN, LSSVM, ElmanNN, and CS-Elman algorithms at 
concentrations of 0~10 pm; (c) Comparison plots of predicted values and set values of BPNN, LSSVM, ElmanNN 

and CS-Elman algorithms are in the range of NH3 concentration from 0 to 100 ppm; (d) Comparison of error between 
standard concentration and measured concentration for BPNN, LSSVM, ElmanNN, and CS-Elman algorithms at 

concentrations of 0~100 ppm. 

TABLE 2. Comparison of Fitting Accuracy of Four Algorithms at 0~10 ppm NH3 Concentration 

Algorithms Standard 
deviation(ppm) 

RMSE 
(ppm) R2 

BPNN 0.268 1.865 0.9982 
LSSVM 0.015 0.098 0.9991 
ElmanNN 0.025 0.156 0.9997 
CS-Elman 0.004 0.061 0.9999 

TABLE 3. Comparison of Fitting Accuracy of Four Algorithms at 0~100 ppm NH3 Concentration 

Algorithms Standard 
deviation(ppm) 

RMSE 
(ppm) R2 

BPNN 1.015 2.415 0.9975 
LSSVM 0.108 1.096 0.9993 
ElmanNN 0.003 0.052 0.9995 
CS-Elman 0.001 0.035 0.9998 

4.5 Sensor stability 

The stability, resolution and limit of detection (LoD) of the sensor are verified by experiments. 
A standard concentration of 20 ppm NH3 was provided by an automatic gas distribution station 
and pumped into the off-axis integration cavity for gas detection. Concentration measurements 
were then recorded over a 90-minute period. The results are depicted in Fig. 6. The unfiltered 
NH3 concentration is shown in Fig. 6(a). The concentration fluctuated between 19.905~20.107 
ppm with a standard deviation of 0.0417 ppm. Fig. 6(b) shows that after EEMD filtering, the 
NH3 concentration is between 19.951~20.041 ppm, with a maximum fluctuation error of 0.0898 
ppm and a standard deviation of 0.0107 ppm. The Allen variance without using the 
preprocessing algorithm is shown in Fig. 6(c) with an integration time of 49 s and a theoretical 



LoD of 5.14 ppb for the sensor. After spectral preprocessing algorithms were applied, it is 
indicated by Fig. 6(d) that, with an integration time of 1 s, the LoD is measured at 10.35 ppb, 
and when the integration time is 43 s, the LoD is increased to 1.54 ppb. This shows that the 
LoD has been significantly improved after EEMD processing, and the sensor has high stability 
and SNR in long-term operation. 

 

Fig. 6. (a) Long-term stability data of the original signal 2f signal; (b) Long-term stability data after EEMD 
processing; (c) Allan variance analysis of the original 2f signal; (d) Allan variance analysis after EEMD processing. 

4.6 Field Application 

The air was continuously measured for 90 min, and the gas concentration detected in real time 
was shown in Fig. 7. The ammonia concentration fluctuated in the range of 400~800 ppb. In 
view of the sudden rise in NH3 concentration, it is speculated that the chemical laboratory on 
the same floor is carrying out chemical experiments. Field experiment results show that the 
device has excellent performance in monitoring trace gases. 

 

Fig. 7. NH3 trace detection sensor deployed on site. 

3. Conclusion 
In this paper, a near-infrared WM-OA-ICOS sensor is demonstrated, suppression of cavity 
mould noise through the use of off-axis methods and suppressing 1/f noise by introducing WMS, 
integrates a spectral denoising algorithm and a concentration inversion model to enable 
continuous real-time detection of NH3 was developed. Experimentally verified the sensor has 
a compact structure with an effective absorption length of 330.5 m. The EEMD algorithm is 
used as a spectral preprocessing method to effectively remove the noise in the 2f signal. In 
order to improve the accuracy and sensitivity of NH3 concentration inversion, a method 
combining the CS algorithm and Elman neural network is designed. After 90 min of long-term 
stability experiments, the standard concentration of NH3 is 20 ppm, the concentration value is 
between 19.951~20.041 ppm. NH3 concentration analysis is then conducted using the Allan 
deviation method, revealing the LoD of ~1.54 ppb and an average detection time of 43 s. In 
addition, the OA-ICOS sensor was tested in an outdoor laboratory and its stability in monitoring 
atmospheric gases was further confirmed by 1 hour of ambient NH3 monitoring. 

Disclosures. The authors declare no conflicts of interest. 

Acknowledgments. This work is supported by the Shandong Province Technology Innovation 
Guidance Program 2020SDGJZDBZ02, the National Natural Science Foundation of China 
62205378, the Beijing Municipal Key Project Outsourcing HX20211125, and the National Key 
Research and Development Program of China 2020YFB0408402. 



References 
1. S. H. Chen, M. M. Cheng, Z. Guo, et al., "Enhanced atmospheric ammonia (NH3) pollution in China from 2008 

to 2016: Evidence from a combination of observations and emissions," Environmental Pollution. 263, 114421 
(2020). 

2. M. Lei, TH Cheng, XY Li, et al., "Atmospheric ammonia point source detection technique at regional scale 
using high resolution satellite imagery and deep learning," Atmospheric Research. 257, 105587 (2021). 

3. Z. R. Lan, W. L. Lin, G. Zhao, "Sources, Variations, and Effects on Air Quality of Atmospheric Ammonia," 
Current Pollution Reports.10, 40-53 (2024). 

4. P. Liu, J. Ding, L. Liu, et al., "Estimation of surface ammonia concentrations and emissions in China from the 
polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric 
Infrared Sounder," Atmospheric Chemistry and Physics. 22, 9099-9110 (2022). 

5. R. Centeno, J. Mandon, S. M. Cristescu, et al., "Sensitivity enhancement in off-axis integrated cavity output 
spectroscopy," Optics Express. 22, 27985-27991 (2014). 

6. J. J. Wang, X. Tian, Y. Dong, et al., "Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with 
radio frequency white noise for gas sensing," Optics Express. 27, 30517-30529 (2019). 

7. R. Centeno, J. Mandon, S. M. Cristescu, et al., "Three mirror off axis integrated cavity output spectroscopy for 
the detection of ethylene using a quantum cascade laser," Sensors and Actuators B-Chemical. 203, 311-319, 
(2014). 

8. K. Y. Zheng, C.T. Zheng, H.P. Zhang, et al., "A novel gas sensing scheme using near-infrared multi-input 
multi-output off-axis integrated cavity output spectroscopy (MIMO-OA-ICOS)," Spectrochimica Acta Part a-
Molecular and Biomolecular Spectroscopy. 256, 119745 (2021). 

9. G. Y. Guan, A.Q. Liu, X.Y. Wu, et al., "Near-Infrared Off-Axis Cavity-Enhanced Optical Frequency Comb 
Spectroscopy for CO2/CO Dual-Gas Detection Assisted by Machine Learning," Acs Sensors. 9, 820-829 
(2024). 

10. M.-N. Ngo, Tong N.-B, Dorothée Dewaele, et al., "Wavelength modulation enhanced off-axis integrated cavity 
output spectroscopy for OH radical measurement at 2.8 µm," Sensors and Actuators A: Physical. 362, 114654 
(2023). 

11. J. J. Wang, X. Tian, Y. Dong, et al., "High-sensitivity off-axis integrated cavity output spectroscopy 
implementing wavelength modulation and white noise perturbation," Optics Letters. 44, 3298-3301 (2019). 

12. D. S. Baer, J. B. Paul, J. B. Gupta, et al., "Sensitive absorption measurements in the near-infrared region using 
off-axis integrated-cavity-output spectroscopy," Applied Physics B-Lasers and Optics. 75, 261-265 (2002). 

13. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, et al., "Mid-infrared quantum cascade laser based off-
axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Applied Optics. 43, 2257-2266, 
(2004). 

14. P. Malara, M. F. Witinski, F. Capasso, et al., "Sensitivity enhancement of off-axis ICOS using wavelength 
modulation," Applied Physics B-Lasers and Optics. 108, 353-359 (2012). 

15. Morville J, Romanini D, Chenevier M, et al., "Effects of laser phase noise on the injection of a high-finesse 
cavity," Applied Optics. 41, 6980-6990 (2002). 

16. Zybin A, Kuritsyn Y A, Mironenko V R, et al., " Cavity enhanced wavelength modulation spectrometry for 
application in chemical analysis," Applied Physics. 78, 103-109 (2004). 

17. Zhang H, Feng L, Wang J, et al., "Development of technology predicting based on EEMD-GRU: An empirical 
study of aircraft assembly technology," Expert Systems with Applications. 246, 123208 (2024). 

18. Z Dao F, Zeng Y, Qian J, "A novel denoising method of the hydro-turbine runner for fault signal based on WT-
EEMD," Measurement. 219, 113306 (2023). 

19. H. Y. Zhang, L. J. Feng, J. F. Wang, et al., "Development of technology predicting based on EEMD-GRU: An 
empirical study of aircraft assembly technology," Expert Systems with Applications. 246, 123208 (2024). 

20. F. Dao, Y. Zeng, J. Qian, "A novel denoising method of the hydro-turbine runner for fault signal based on WT-
EEMD," Measurement. 219, 113306 (2023). 

21. D. Li, M. R. Jiang, M. W. Li, et al., "A floating offshore platform motion forecasting approach based on EEMD 
hybrid ConvLSTM and chaotic quantum ALO," Applied Soft Computing. 144, 110487 (2023). 

22. Y. K. Lu, B. Y. Sheng, G. C. Fu, et al., "Prophet-EEMD-LSTM based method for predicting energy 
consumption in the paint workshop," Applied Soft Computing. 143, 110447 (2023). 

23. H. Su, N. Zhou, Q. S. Wu, et al., "Investigating price fluctuations in copper futures: Based on EEMD and 
Markov-switching VAR model," Resources Policy. 82, 103518 (2023). 

24. Y. Guo, D. F. Yang, Y. Zhang, et al., "Online estimation of SOH for lithium-ion battery based on SSA-Elman 
neural network," Protection and Control of Modern Power Systems. 7, 40 (2022). 

25. Y. Zhang, J. P. Zhao, L. M. Wang, et al., "An improved OIF Elman neural network based on CSO algorithm 
and its applications," Computer Communications. 171, 148-156 (2021). 

26. X. Y. Ma, X. H. Zhang, "A short-term prediction model to forecast power of photovoltaic based on MFA-
Elman," Energy Report. 8, 495-507 (2022). 

27. M. Zhang, J. X. Yang, R. F. Ma, et al., "RETRACTED: Prediction of small-scale piles by considering lateral 
deflection based on Elman Neural Network-Improved Arithmetic Optimizer algorithm (Retracted Article)," Isa 
Transactions. 127, 473-486 (2022). 

28. R. Rajabioun, "Cuckoo Optimization Algorithm," Applied Soft Computing. 11, 5508-5518 (2011). 


